298 research outputs found

    Mitochondrial heteroplasmy and DNA barcoding in Hawaiian Hylaeus (Nesoprosopis) bees (Hymenoptera: Colletidae)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The past several years have seen a flurry of papers seeking to clarify the utility and limits of DNA barcoding, particularly in areas such as species discovery and paralogy due to nuclear pseudogenes. Heteroplasmy, the coexistence of multiple mitochondrial haplotypes in a single organism, has been cited as a potentially serious problem for DNA barcoding but its effect on identification accuracy has not been tested. In addition, few studies of barcoding have tested a large group of closely-related species with a well-established morphological taxonomy. In this study we examine both of these issues, by densely sampling the Hawaiian <it>Hylaeus </it>bee radiation.</p> <p>Results</p> <p>Individuals from 21 of the 49 <it>a priori </it>morphologically-defined species exhibited coding sequence heteroplasmy at levels of 1-6% or more. All homoplasmic species were successfully identified by COI using standard methods of analysis, but only 71% of heteroplasmic species. The success rate in identifying heteroplasmic species was increased to 86% by treating polymorphisms as character states rather than ambiguities. Nuclear pseudogenes (numts) were also present in four species, and were distinguishable from heteroplasmic sequences by patterns of nucleotide and amino acid change.</p> <p>Conclusions</p> <p>Heteroplasmy significantly decreased the reliability of species identification. In addition, the practical issue of dealing with large numbers of polymorphisms- and resulting increased time and labor required - makes the development of DNA barcode databases considerably more complex than has previously been suggested. The impact of heteroplasmy on the utility of DNA barcoding as a bulk specimen identification tool will depend upon its frequency across populations, which remains unknown. However, DNA barcoding is still likely to remain an important identification tool for those species that are difficult or impossible to identify through morphology, as is the case for the ecologically important solitary bee fauna.</p

    Natural processes influencing pollinator health

    Get PDF
    Evidence from the last few decades indicates that pollinator abundance and diversity are at risk, with many species in decline. Anthropogenic impacts have been the focus of much recent work on the causes of these declines. However, natural processes from plant chemistry, nutrition and microbial associations to landscape and habitat change can also profoundly influence pollinator health. Here, we argue that these natural processes require greater attention and may even provide solutions to the deteriorating outlook for pollinators. Existing studies also focus on the decline of individual and colonies and only occasionally at population levels. Here we redefine pollinator health and argue that a top-down approach is required focusing at the ecological level of communities. We use examples from the primary research, opinion and review articles published in this special issue to illustrate how natural processes influence pollinator health from community to individuals and highlight where some of these processes could mitigate the challenges of anthropogenic and natural drivers of change

    Climate warming, marine protected areas and the ocean-scale integrity of coral reef ecosystems

    Get PDF
    Coral reefs have emerged as one of the ecosystems most vulnerable to climate variation and change. While the contribution of a warming climate to the loss of live coral cover has been well documented across large spatial and temporal scales, the associated effects on fish have not. Here, we respond to recent and repeated calls to assess the importance of local management in conserving coral reefs in the context of global climate change. Such information is important, as coral reef fish assemblages are the most species dense vertebrate communities on earth, contributing critical ecosystem functions and providing crucial ecosystem services to human societies in tropical countries. Our assessment of the impacts of the 1998 mass bleaching event on coral cover, reef structural complexity, and reef associated fishes spans 7 countries, 66 sites and 26 degrees of latitude in the Indian Ocean. Using Bayesian meta-analysis we show that changes in the size structure, diversity and trophic composition of the reef fish community have followed coral declines. Although the ocean scale integrity of these coral reef ecosystems has been lost, it is positive to see the effects are spatially variable at multiple scales, with impacts and vulnerability affected by geography but not management regime. Existing no-take marine protected areas still support high biomass of fish, however they had no positive affect on the ecosystem response to large-scale disturbance. This suggests a need for future conservation and management efforts to identify and protect regional refugia, which should be integrated into existing management frameworks and combined with policies to improve system-wide resilience to climate variation and change

    Mapping of Mycobacterium tuberculosis Complex Genetic Diversity Profiles in Tanzania and Other African Countries

    Get PDF
    The aim of this study was to assess and characterize Mycobacterium tuberculosis complex (MTBC) genotypic diversity in Tanzania, as well as in neighbouring East and other several African countries. We used spoligotyping to identify a total of 293 M. tuberculosis clinical isolates (one isolate per patient) collected in the Bunda, Dar es Salaam, Ngorongoro and Serengeti areas in Tanzania. The results were compared with results in the SITVIT2 international database of the Pasteur Institute of Guadeloupe. Genotyping and phylogeographical analyses highlighted the predominance of the CAS, T, EAI, and LAM MTBC lineages in Tanzania. The three most frequent Spoligotype International Types (SITs) were: SIT21/CAS1-Kili (n = 76; 25.94%), SIT59/LAM11-ZWE (n = 22; 7.51%), and SIT126/EAI5 tentatively reclassified as EAI3-TZA (n = 18; 6.14%). Furthermore, three SITs were newly created in this study (SIT4056/EAI5 n = 2, SIT4057/T1 n = 1, and SIT4058/EAI5 n = 1). We noted that the East-African-Indian (EAI) lineage was more predominant in Bunda, the Manu lineage was more common among strains isolated in Ngorongoro, and the Central-Asian (CAS) lineage was more predominant in Dar es Salaam (p-value<0.0001). No statistically significant differences were noted when comparing HIV status of patients vs. major lineages (p-value = 0.103). However, when grouping lineages as Principal Genetic Groups (PGG), we noticed that PGG2/3 group (Haarlem, LAM, S, T, and X) was more associated with HIV-positive patients as compared to PGG1 group (Beijing, CAS, EAI, and Manu) (p-value = 0.03). This study provided mapping of MTBC genetic diversity in Tanzania (containing information on isolates from different cities) and neighbouring East African and other several African countries highlighting differences as regards to MTBC genotypic distribution between Tanzania and other African countries. This work also allowed underlining of spoligotyping patterns tentatively grouped within the newly designated EAI3-TZA lineage (remarkable by absence of spacers 2 and 3, and represented by SIT126) which seems to be specific to Tanzania. However, further genotyping information would be needed to confirm this specificity

    Human neutrophil clearance of bacterial pathogens triggers anti-microbial gamma delta T cell responses in early infection

    Get PDF
    Human blood Vc9/Vd2 T cells, monocytes and neutrophils share a responsiveness toward inflammatory chemokines and are rapidly recruited to sites of infection. Studying their interaction in vitro and relating these findings to in vivo observations in patients may therefore provide crucial insight into inflammatory events. Our present data demonstrate that Vc9/Vd2 T cells provide potent survival signals resulting in neutrophil activation and the release of the neutrophil chemoattractant CXCL8 (IL-8). In turn, Vc9/Vd2 T cells readily respond to neutrophils harboring phagocytosed bacteria, as evidenced by expression of CD69, interferon (IFN)-c and tumor necrosis factor (TNF)-a. This response is dependent on the ability of these bacteria to produce the microbial metabolite (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP), requires cell-cell contact of Vc9/Vd2 T cells with accessory monocytes through lymphocyte function-associated antigen-1 (LFA-1), and results in a TNF-a dependent proliferation of Vc9/Vd2 T cells. The antibiotic fosmidomycin, which targets the HMB-PP biosynthesis pathway, not only has a direct antibacterial effect on most HMB-PP producing bacteria but also possesses rapid anti-inflammatory properties by inhibiting cd T cell responses in vitro. Patients with acute peritoneal-dialysis (PD)-associated bacterial peritonitis – characterized by an excessive influx of neutrophils and monocytes into the peritoneal cavity – show a selective activation of local Vc9/Vd2 T cells by HMB-PP producing but not by HMB-PP deficient bacterial pathogens. The cd T celldriven perpetuation of inflammatory responses during acute peritonitis is associated with elevated peritoneal levels of cd T cells and TNF-a and detrimental clinical outcomes in infections caused by HMB-PP positive microorganisms. Taken together, our findings indicate a direct link between invading pathogens, neutrophils, monocytes and microbe-responsive cd T cells in early infection and suggest novel diagnostic and therapeutic approaches.Martin S. Davey, Chan-Yu Lin, Gareth W. Roberts, Sinéad Heuston, Amanda C. Brown, James A. Chess, Mark A. Toleman, Cormac G.M. Gahan, Colin Hill, Tanya Parish, John D. Williams, Simon J. Davies, David W. Johnson, Nicholas Topley, Bernhard Moser and Matthias Eber

    Pan-european assessment, monitoring, and mitigation of stressors on the health of bees

    Get PDF
    Within the PoshBee Project we have tested three bee species – honey bees Apis mellifera, bumble bees Bombus terrestris and solitary bees Osmia bicornis – for their sensitivity to pesticides and analysed the clearance of pesticides from bees. For each species, all castes and sexes were studied. We synthesised the mortality data (LD50 or results of limit tests) with the toxicokinetic patterns and analysed this against the background of inter- and intraspecific variation in life-histories of the tested bees. The clearance of sulfoxaflor is relatively similar across all bee species tested and in females after contact treatment it tends to be retained. The toxicity increases over time independently of the clearance from the body. The clearance of azoxystrobin was rapid in Osmia and bumble bees, as well as in honey bee queens, but in honey bee workers there was very little clearance. Similar to sulfoxaflor the toxicity increased over time, although the residues were detected at very low levels. Glyphosate tended to be retained in bumble bees after contact treatment but cleared rapidly after oral treatment. For Osmia bees only in males after contact treatment was the glyphosate almost lost. The toxicity of a pesticide is dependent on the exact dosage, but also the exposure route and time, as well as the speed of detoxification and clearance from a body. The assessment for the hazard that a less toxic pesticide might pose, can be largely dependent on the exposure route. The effects of pesticide toxicity can increase even after the molecules have been cleared out of the body.Prepared under contract from the European Commission; Grant agreement No. 773921; EU Horizon 2020 Research and Innovation action.Prepared under contract from the European Commission; Grant agreement No. 773921; EU Horizon 2020 Research and Innovation action

    Pan-european assessment, monitoring, and mitigation of stressors on the health of bees

    Get PDF
    Inter-individual differences in pesticide sensitivity may trigger variability in the risk posed by pesticides. Therefore, to better inform pesticide risk assessment for bees, we studied the variability of responses to several pesticides based on endogenous (developmental stage, genetic background, caste) and exogenous factors (pesticide co-exposure). We mainly investigated the toxicity of the insecticide sulfoxaflor, the fungicide azoxystrobin and the herbicide glyphosate. We first used LD50 tests to determine the acute oral and contact toxicity of these pesticides across the different bee species, developmental stages (larva vs adult in honey bees), castes (honey bee and bumble bee workers, queens and drones), and genetic backgrounds (honey bee subspecies). We then considered the risks posed by chronic and sublethal exposures to pesticides by implementing behavioural and reproductive endpoints in the screening of pesticide toxicity. Data showed that azoxystrobin and glyphosate under the test conditions were mildly toxic to bees. However, a large variability in bee sensitivity to sulfoxaflor was found, especially across species and individuals of different castes or sex. This variability is therefore important to consider for increasing the safety margin of the risk posed by insecticides in bees. Several effects induced by sublethal concentrations or doses of pesticides are also described, such as the occurrence of a Non-Monotonic Dose-Response (NMDR) and delayed effects in honey bees, impairment of reproductive performances in bumble bees, and a decreased longevity of Osmia adult females (although no effects were found on larval development). Finally, an interaction between pesticides was found when exposure was by contact, but not under oral exposure. In conclusion, the range of effects described here provides very useful insights for better understanding the toxicity of pesticides and therefore the risks they might pose to bees.Prepared under contract from the European Commission; Grant agreement No. 773921; EU Horizon 2020 Research and Innovation action.Prepared under contract from the European Commission; Grant agreement No. 773921; EU Horizon 2020 Research and Innovation action

    Blood Feeding and Insulin-like Peptide 3 Stimulate Proliferation of Hemocytes in the Mosquito Aedes aegypti

    Get PDF
    All vector mosquito species must feed on the blood of a vertebrate host to produce eggs. Multiple cycles of blood feeding also promote frequent contacts with hosts, which enhance the risk of exposure to infectious agents and disease transmission. Blood feeding triggers the release of insulin-like peptides (ILPs) from the brain of the mosquito Aedes aegypti, which regulate blood meal digestion and egg formation. In turn, hemocytes serve as the most important constitutive defense in mosquitoes against pathogens that enter the hemocoel. Prior studies indicated that blood feeding stimulates hemocytes to increase in abundance, but how this increase in abundance is regulated is unknown. Here, we determined that phagocytic granulocytes and oenocytoids express the A. aegypti insulin receptor (AaMIR). We then showed that: 1) decapitation of mosquitoes after blood feeding inhibited hemocyte proliferation, 2) a single dose of insulin-like peptide 3 (ILP3) sufficient to stimulate egg production rescued proliferation, and 3) knockdown of the AaMIR inhibited ILP3 rescue activity. Infection studies indicated that increased hemocyte abundance enhanced clearance of the bacterium Escherichia coli at lower levels of infection. Surprisingly, however, non-blood fed females better survived intermediate and high levels of E. coli infection than blood fed females. Taken together, our results reveal a previously unrecognized role for the insulin signaling pathway in regulating hemocyte proliferation. Our results also indicate that blood feeding enhances resistance to E. coli at lower levels of infection but reduces tolerance at higher levels of infection
    • …
    corecore